
# Air Distribution Catalog





# Table of Contents

## Duct mounted register (loose)

| Duct mounted register (smooth body) |   |
|-------------------------------------|---|
| TDMRG                               | 8 |
| TDMRGI                              | 8 |
| XDMRG                               |   |

### Duct mounted register (spiral body)

| Duct mounted register (spiral body) |    |
|-------------------------------------|----|
| SRTDMRG                             | 10 |
| SRTDMRGI                            |    |
| SRXDMRG                             | 11 |
| SRXDMRGI                            | 11 |
| Curved register<br>CREG             | 12 |
|                                     |    |

### **Drum louver**

| DRLAA | 14 |
|-------|----|
|       |    |

### Ventiduct

| VSR | 17 |
|-----|----|
|-----|----|

### **Rectangular taps**

| RDTP  | 21 |
|-------|----|
| RDBTP | 22 |



#### General

Л

Supply or exhaust registers shall be EHG Duct's DMR for direct mounting on spiral ducts of sizes shown on the plans or outlet schedule.

The register is to be mounted without the use of a rectangular register tap. The top and bottom flanges are to meet flush with the spiral duct wall regardless of duct diameter. End caps shall be provided that conform to the varying duct diameter.

#### Materials

The register shall be manufactured of 22 gauge galvanized steel without further surface treatment. Welds or other surface discolorations on the register are unacceptable.

#### Construction

The register shall have double deflection adjustable blades with the front blades parallel to the short dimension of the register. Blades shall be placed on 3/4" centers and shall have steel friction pivots on both ends to allow for individual blade adjustment without loosening or rattling. Screw holes shall be countersunk for a flush, neat appearance.

#### Damper

The volume damper shall be of the single blade type manufactured from 22 gauge electro-galvanized steel. Volume damper shall be operable from the face of the register via a volume control rod. Notched rod shall be fixed in place by a tension lock located at the front of the register.

#### Performance

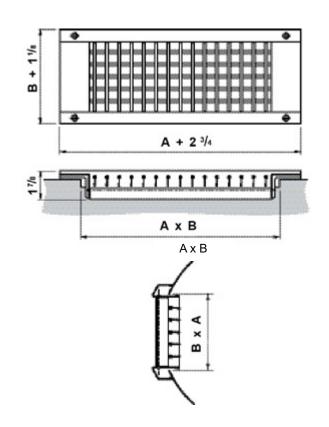
Performance of register shall be as per manufacturer's cataloged data. Manufacturers whose registers utilize a rectangular register tap to adapt to use with spiral duct shall submit correction factors for their cataloged data.



# DMR



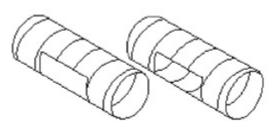
### Description


The DMR is a supply/return register with adjustable double deflection blades and a volume damper designed specifically for direct mounting on a spiral duct. The use of rectangular register taps are not required.

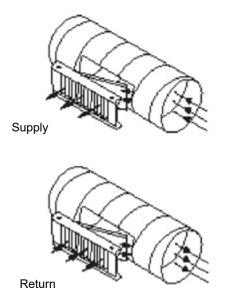
The register is designed in such a way that the flanges always meet flush to the duct regardless of the duct diameter. It also comes equipped with end caps and a gasketing material installed around the neck of the register. This prevents air leakage. DMR is manufactured from galvanized sheet steel and is assembled without the use of welding. This allows the register to be used without further surface treatment and gives it the same finish as the duct.

Materials and finish: Register: galvanized sheet steel Damper: electro-galvanized sheet steel

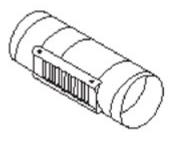
#### Maintenance:


The grille should be removed to gain access to the duct.




| Register  | Min. duct | Free  | Duct opening                                                   | Weight |
|-----------|-----------|-------|----------------------------------------------------------------|--------|
| nom. size | diameter  | area  | AxB                                                            |        |
| (in)      | (in)      | (ft²) | (in)                                                           | (lb)   |
| 13 ×3     | 6         | 0.18  | 12 ³/₄ × 3                                                     | 2.4    |
| 17 ×3     | 6         | 0.25  | 16 ³/₄ × 3                                                     | 3.1    |
| 21 ×3     | 6         | 0.30  | 20 <sup>5</sup> / <sub>8</sub> × 3                             | 3.7    |
| 25 ×3     | 6         | 0.36  | 24 <sup>5</sup> / <sub>8</sub> × 3                             | 4.2    |
| 33 ×3     | 6         | 0.48  | 32 <sup>1</sup> / <sub>2</sub> × 3                             | 5.3    |
| 41 ×3     | 8         | 0.60  | 40 ³/ <sub>8</sub> × 3                                         | 6.4    |
| 49 ×3     | 8         | 0.73  | 48 <sup>1</sup> / <sub>4</sub> × 3                             | 7.1    |
| 13 ×6     | 12        | 0.36  | 12 ³/₄ × 6                                                     | 3.1    |
| 17 ×6     | 12        | 0.48  | 16 ³/₄ × 6                                                     | 4.2    |
| 21 ×6     | 12        | 0.60  | 20 <sup>5</sup> / <sub>8</sub> × 6                             | 5.1    |
| 25 ×6     | 12        | 0.73  | 24 <sup>5</sup> / <sub>8</sub> × 6                             | 5.7    |
| 33 ×6     | 12        | 1.00  | 32 <sup>1</sup> / <sub>2</sub> × 6                             | 7.7    |
| 41 ×6     | 12        | 1.20  | 40 <sup>3</sup> / <sub>8</sub> × 6                             | 8.6    |
| 49 ×6     | 12        | 1.46  | 48 ¹/₄ × 6                                                     | 9.7    |
| 13 ×9     | 20        | 0.60  | 12 ³/ <sub>4</sub> × 8 <sup>7</sup> / <sub>8</sub>             | 4.8    |
| 17 ×9     | 20        | 0.80  | 16 <sup>3</sup> / <sub>4</sub> × 8 <sup>7</sup> / <sub>8</sub> | 6.6    |
| 21 ×9     | 20        | 1.00  | 20 <sup>5</sup> / <sub>8</sub> × 8 <sup>7</sup> / <sub>8</sub> | 7.5    |
| 25 ×9     | 20        | 1.20  | 24 <sup>5</sup> / <sub>8</sub> × 8 <sup>7</sup> / <sub>8</sub> | 8.2    |
| 33 ×9     | 20        | 1.60  | 32 <sup>1</sup> / <sub>2</sub> × 8 <sup>7</sup> / <sub>8</sub> | 11.2   |
| 41 ×9     | 20        | 2.00  | 40 <sup>3</sup> / <sub>8</sub> × 8 <sup>7</sup> / <sub>8</sub> | 12.8   |
| 49 ×9     | 20        | 2.41  | 48 <sup>1</sup> / <sub>4</sub> × 8 <sup>7</sup> / <sub>8</sub> | 13.9   |

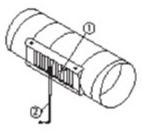



## Mounting



Remove the protective backing from template. Position the template on the duct and press firmly. Cut along the edges of the template, following the edges as closely as possible and remove the "cut-out".




Insert the air extractor control rod through the tension lock on the face of the register. Position the DMR register in the opening, making certain that the gasket material remains in place. Check that register has been installed correctly in relation to the direction of air flow.



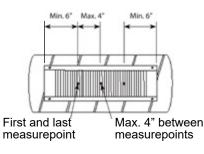
Secure the DMR with screws (provided). Adjust vanes as necessary.

### Balancing

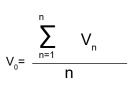
1 Air control extractor rod (2) Probe



Mean velocity, V<sub>o</sub>


Measure velocity (V<sub>n</sub>) in n number of points. First and last measurements is taken 6" from end of register.

Measurements are spread equally between first and last measurement.


Flowrate [cfm] = F x V<sub>o</sub>

V Mean velocity [fpm]

F Flow factor



n number of measurepoints



| Dim. A | n |
|--------|---|
| 13"    | 2 |
| 17"    | 3 |
| 21"    | 3 |
| 25"    | 4 |
| 33"    | 5 |
| 41"    | 7 |
| 49"    | 7 |

|      |      |       | Dir  | n. B |      |      |  |  |
|------|------|-------|------|------|------|------|--|--|
| Dim. | 3"   |       | 6    | 6"   | ę    | 9"   |  |  |
| A    | Sup. | Ret.  | Sup. | Ret. | Sup. | Ret. |  |  |
| 13"  | 0.18 | 0.135 | 0.36 | 0.27 | 0.60 | 0.45 |  |  |
| 17"  | 0.25 | 0.19  | 0.48 | 0.36 | 0.80 | 0.60 |  |  |
| 21"  | 0.30 | 0.23  | 0.60 | 0.45 | 1.00 | 0.75 |  |  |
| 25"  | 0.36 | 0.27  | 0.73 | 0.55 | 1.20 | 0.90 |  |  |
| 33"  | 0.48 | 0.36  | 1.00 | 0.75 | 1.60 | 1.20 |  |  |
| 41"  | 0.60 | 0.48  | 1.20 | 0.90 | 2.00 | 1.50 |  |  |
| 49"  | 0.73 | 0.55  | 1.46 | 1.10 | 2.41 | 1.18 |  |  |



We reserve the right to make changes without prior notice. Therefore, all designs, specifications and product features are subject to change without notice. The company and it's products are protected by patents and registered trademarks. Copyright 2016 EHG. All rights reserved.

# DMR

#### SELECTION CHART SUPPLY AND RETURN

| Core velocity (fp                         | m)       |       | 300     | 400     | 500     | 600      | 700      | 800      | 1000     | 1200     |
|-------------------------------------------|----------|-------|---------|---------|---------|----------|----------|----------|----------|----------|
| Velocity Pressure                         | e        |       | 0.006   | 0.010   | 0.016   | 0.023    | 0.031    | 0.040    | 0.063    | 0.090    |
| Total Pressure                            |          | 0°    | 0.011   | 0.019   | 0.028   | 0.039    | 0.052    | 0.067    | 0.101    | 0.141    |
|                                           |          | 22.5° | 0.012   | 0.021   | 0.032   | 0.044    | 0.059    | 0.075    | 0.114    | 0.159    |
| Size                                      |          | 45°   | 0.019   | 0.033   | 0.049   | 0.069    | 0.092    | 0.117    | 0.177    | 0.248    |
| A <sub>c</sub> 0.18 (ft²)                 | cfm      |       | 54      | 72      | 90      | 108      | 126      | 144      | 180      | 216      |
| 13 x 3                                    | NC       | 0°    | -       | -       | -       | 14       | 20       | 25       | 33       | 40       |
| 1                                         | Throw ft | 0°    | 347     | 6712    | 8 9 18  | 10 12 23 | 12 14 27 | 14 17 32 | 17 21 40 | 19 25 47 |
|                                           |          | 22.5° | 325     | 5 5 10  | 6 7 14  | 8 10 18  | 10 11 22 | 11 13 25 | 13 17 32 | 15 20 37 |
|                                           |          | 45°   | 223     | 336     | 459     | 5611     | 6714     | 7816     | 8 10 20  | 9 12 23  |
| A <sub>c</sub> 0.24 (ft <sup>2</sup> )    | cfm      |       | 72      | 96      | 120     | 144      | 168      | 192      | 240      | 288      |
| 17 x 3                                    | NC       | 0°    | -       | -       | 12      | 18       | 24       | 29       | 37       | 44       |
|                                           | Throw ft | 0°    | 359     | 6 8 15  | 8 11 20 | 10 13 25 | 12 16 30 | 14 18 34 | 17 22 42 | 19 26 49 |
|                                           |          | 22.5° | 347     | 5612    | 7816    | 8 11 20  | 10 13 24 | 11 14 27 | 14 18 34 | 15 21 39 |
|                                           |          | 45°   | 225     | 347     | 4 5 10  | 5713     | 6 8 15   | 7917     | 8 11 21  | 10 13 25 |
| A <sub>c</sub> 0.30 (ft <sup>2</sup> )    | cfm      |       | 90      | 120     | 150     | 180      | 210      | 240      | 300      | 360      |
| 21 x 3                                    | NC       | 0°    | -       | -       | 14      | 21       | 26       | 31       | 39       | 46       |
|                                           | Throw ft | 0°    | 3 6 11  | 6917    | 8 12 22 | 11 14 27 | 12 17 32 | 14 19 36 | 17 23 44 | 19 27 51 |
|                                           |          | 22.5° | 359     | 5 7 13  | 7917    | 8 11 21  | 10 13 25 | 11 15 29 | 14 18 35 | 15 21 41 |
|                                           |          | 45°   | 236     | 348     | 4 6 11  | 5713     | 6 8 16   | 7918     | 9 12 22  | 10 13 25 |
| A <sub>c</sub> 0.36 (ft <sup>2</sup> ) cf | cfm      |       | 108     | 144     | 180     | 216      | 252      | 288      | 360      | 432      |
| 25 x 3,                                   | NC       | 0°    | -       | -       | 14      | 21       | 26       | 31       | 39       | 46       |
| 13 x 6                                    | Throw ft | 0°    | 4 7 13  | 6 10 19 | 9 13 24 | 11 15 29 | 13 18 33 | 14 20 38 | 17 24 46 | 19 28 53 |
|                                           |          | 22.5° | 3 5 10  | 5815    | 7 10 19 | 9 12 23  | 10 14 27 | 12 16 30 | 14 19 37 | 16 22 42 |
|                                           |          | 45°   | 236     | 359     | 4 6 12  | 5814     | 6917     | 7 10 19  | 9 12 23  | 10 14 26 |
| A <sub>c</sub> 0.48 (ft <sup>2</sup> )    | cfm      |       | 144     | 192     | 240     | 288      | 336      | 384      | 480      | 576      |
| 33 x 3,                                   | NC       | 0°    | -       | 12      | 20      | 27       | 32       | 37       | 45       | 52       |
| 17 x 6                                    | Throw ft | 0°    | 4 9 16  | 7 12 22 | 9 14 27 | 11 17 32 | 13 19 37 | 15 22 41 | 18 26 49 | 20 30 56 |
|                                           |          | 22.5° | 3 7 13  | 5917    | 7 11 22 | 9 14 26  | 10 15 29 | 12 17 33 | 14 21 39 | 16 24 45 |
|                                           |          | 45°   | 248     | 3 6 11  | 4 7 14  | 6 8 16   | 7 10 18  | 7 11 21  | 9 13 25  | 10 15 28 |
| A <sub>c</sub> 0.60 (ft <sup>2</sup> )    | cfm      |       | 180     | 240     | 300     | 360      | 420      | 480      | 600      | 720      |
| 41 x 3,                                   | NC       | 0°    | -       | 15      | 23      | 29       | 35       | 40       | 48       | 54       |
| 21 x 6,                                   | Throw ft | 0°    | 4 10 19 | 7 13 25 | 9 16 30 | 12 18 35 | 13 21 40 | 15 23 44 | 18 27 52 | 20 31 59 |
| 13 x 9                                    |          | 22.5° | 4 8 15  | 6 10 20 | 8 13 24 | 9 15 28  | 11 17 32 | 12 19 35 | 14 22 42 | 16 25 47 |
|                                           |          | 45°   | 2 5 10  | 4 6 12  | 5 8 15  | 6917     | 7 10 20  | 8 12 22  | 9 14 26  | 10 16 29 |
| A <sub>c</sub> 0.73 (ft <sup>2</sup> )    | cfm      |       | 219     | 292     | 365     | 438      | 511      | 584      | 730      | 876      |
| 49 x 3,                                   | NC       | 0°    | -       | 15      | 23      | 29       | 35       | 40       | 48       | 54       |
| 25 x 6                                    | Throw ft | 0°    | 4 10 19 | 7 13 25 | 9 16 30 | 12 18 35 | 13 21 40 | 15 23 44 | 18 27 52 | 20 31 59 |
|                                           |          | 22.5° | 4 8 15  | 6 10 20 | 8 13 24 | 9 15 28  | 11 17 32 | 12 19 35 | 14 22 42 | 16 25 47 |
|                                           |          | 45°   | 2 5 10  | 4 6 12  | 5815    | 6917     | 7 10 20  | 8 12 22  | 9 14 26  | 10 16 29 |
| A <sub>c</sub> 0.80 (ft <sup>2</sup> )    | cfm      |       | 240     | 320     | 400     | 480      | 560      | 640      | 800      | 960      |
| 17 x 9                                    | NC       | 0°    | -       | 18      | 26      | 33       | 38       | 43       | 51       | 58       |
|                                           | Throw ft | 0°    | 5 12 22 | 8 15 28 | 10 17 3 | 12 20 38 | 14 23 43 | 16 25 47 | 19 29 55 | 21 33 62 |
|                                           |          | 22.5° | 4 9 18  | 6 12 22 | 8 14 27 | 10 16 31 | 11 18 34 | 13 20 38 | 15 23 44 | 17 26 50 |
|                                           |          | 45°   | 3 6 11  | 4 7 14  | 5917    | 6 10 19  | 7 11 21  | 8 12 24  | 9 15 8   | 10 16 31 |

We reserve the right to make changes without prior notice. Therefore, all designs, specifications and product features are subject to change without notice. The company and it's products are protected by patents and registered trademarks. Copyright 2016 EHG. All rights reserved.



# DMR

7

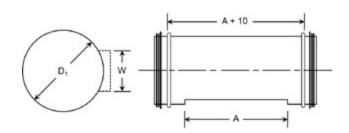
### SELECTION CHART SUPPLY AND RETURN

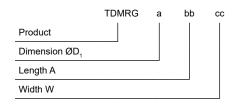
| Core velocity (fpm)                              |          |       | 300     | 400      | 500      | 600      | 700      | 800      | 1000     | 1200     |
|--------------------------------------------------|----------|-------|---------|----------|----------|----------|----------|----------|----------|----------|
| Velocity Pressure                                |          |       | 0.006   | 0.010    | 0.016    | 0.023    | 0.031    | 0.040    | 0.063    | 0.090    |
| Total Pressure                                   |          | 0°    | 0.011   | 0.019    | 0.028    | 0.039    | 0.052    | 0.067    | 0.101    | 0.141    |
|                                                  |          | 22.5° | 0.012   | 0.021    | 0.032    | 0.044    | 0.059    | 0.075    | 0.114    | 0.159    |
| Size                                             |          | 45°   | 0.019   | 0.033    | 0.049    | 0.069    | 0.092    | 0.117    | 0.177    | 0.248    |
| A <sub>c</sub> 1.00 (ft <sup>2</sup> )           | cfm      |       | 300     | 400      | 500      | 600      | 700      | 800      | 1000     | 1200     |
| 33 x 6,                                          | NC       | 0°    | 10      | 21       | 29       | 35       | 41       | 46       | 54       | 61       |
| 21 x 9                                           | Throw ft | 0°    | 6 13 24 | 8 16 30  | 11 18 35 | 13 21 40 | 15 23 44 | 16 26 49 | 19 30 57 | 21 34 64 |
|                                                  |          | 22.5° | 5 10 19 | 7 12 24  | 9 15 28  | 10 17 32 | 12 19 36 | 13 21 39 | 15 24 45 | 17 27 51 |
|                                                  |          | 45°   | 3 6 12  | 4 8 15   | 5917     | 6 10 20  | 7 12 22  | 8 13 24  | 10 15 28 | 11 17 32 |
| A <sub>c</sub> 1.20 (ft <sup>2</sup> )           | cfm      |       | 360     | 480      | 600      | 720      | 840      | 960      | 1200     | 1440     |
| 41 x 6,                                          | NC       | 0°    | 13      | 23       | 31       | 38       | 43       | 48       | 56       | 63       |
| 25 x 9                                           | Throw ft | 0°    | 6 13 24 | 9 16 30  | 11 18 35 | 13 21 40 | 15 23 44 | 17 26 49 | 20 30 57 | 22 34 64 |
|                                                  |          | 22.5° | 5 10 19 | 7 12 24  | 9 15 28  | 11 17 32 | 12 19 36 | 14 21 39 | 12 24 45 | 18 27 51 |
|                                                  |          | 45°   | 3 6 12  | 4 8 15   | 6917     | 7 10 20  | 8 12 22  | 9 13 24  | 10 15 28 | 11 17 32 |
| A <sub>c</sub> 1.46 (ft <sup>2</sup> )           | cfm      |       | 438     | 584      | 730      | 876      | 1022     | 1168     | 1460     | 1752     |
| 49 x 6                                           | NC       | 0°    | 15      | 25       | 33       | 40       | 46       | 50       | 59       | 65       |
|                                                  | Throw ft | 0°    | 7 11 21 | 10 14 27 | 12 17 32 | 14 20 37 | 16 22 42 | 18 24 46 | 21 29 54 | 23 32 61 |
|                                                  |          | 22.5° | 6917    | 8 11 22  | 10 14 26 | 11 16 30 | 13 18 34 | 14 20 37 | 17 23 43 | 18 26 49 |
|                                                  |          | 45°   | 4 6 11  | 5 7 14   | 6 8 16   | 7 10 19  | 8 11 21  | 9 12 23  | 10 14 27 | 11 16 31 |
| A <sub>c</sub> 1.60 (ft <sup>2</sup> )           | cfm      |       | 480     | 640      | 800      | 960      | 1120     | 1280     | 1600     | 1920     |
| 33 x 9                                           | NC       | 0°    | 16      | 26       | 35       | 41       | 47       | 52       | 60       | 66       |
|                                                  | Throw ft | 0°    | 8 10 19 | 10 13 25 | 13 16 30 | 15 18 35 | 17 21 39 | 18 23 44 | 21 27 52 | 23 31 59 |
|                                                  |          | 22.5° | 6 8 15  | 8 10 20  | 10 13 24 | 12 15 28 | 13 17 32 | 15 18 35 | 17 22 41 | 19 25 47 |
|                                                  |          | 45°   | 459     | 5612     | 6 8 15   | 7917     | 8 10 2   | 9 12 22  | 11 14 26 | 12 15 29 |
| A <sub>c</sub> 2.00 (ft <sup>2</sup> )           | cfm      |       | 600     | 800      | 1000     | 1200     | 1400     | 1600     | 2000     | 2400     |
| 41 x 9                                           | NC       | 0°    | 19      | 29       | 37       | 44       | 49       | 54       | 62       | 69       |
|                                                  | Throw ft | 0°    | 9 12 22 | 12 15 28 | 14 18 34 | 16 21 40 | 18 23 44 | 20 26 49 | 23 29 56 | 25 32 61 |
|                                                  |          | 22.5° | 7 9 18  | 9 12 23  | 11 14 27 | 13 17 32 | 14 19 35 | 16 2039  | 18 2345  | 20 26 49 |
|                                                  |          | 45°   | 4 6 11  | 6714     | 7917     | 8 10 20  | 9 12 22  | 10 13 24 | 11 15 28 | 12 16 30 |
| A <sub>c</sub> 2.41 (ft <sup>2</sup> )<br>49 x 9 | cfm      |       | 723     | 964      | 1205     | 1446     | 1687     | 1928     | 2410     | 2892     |
|                                                  | NC       | 0°    | 21      | 31       | 40       | 46       | 52       | 57       | 65       | 71       |
|                                                  | Throw ft | 0°    | 10 13 5 | 13 17 32 | 15 20 38 | 17 23 43 | 19 25 48 | 21 27 52 | 24 31 59 | 26 34 64 |
|                                                  |          | 22.5° | 8 11 20 | 10 13 25 | 12 16 30 | 14 18 34 | 15 20 38 | 17 22 41 | 19 25 47 | 21 27 51 |
|                                                  |          | 45°   | 5713    | 6 8 16   | 8 10 19  | 9 11 21  | 10 13 24 | 10 14 26 | 12 16 29 | 13 17 32 |



We reserve the right to make changes without prior notice. Therefore, all designs, specifications and product features are subject to change without notice. The company and it's products are protected by patents and registered trademarks. Copyright 2016 EHG. All rights reserved.

# Fitting bodies


# TDMRG

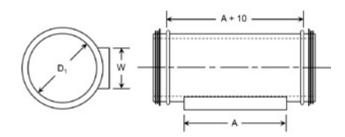



### Description

Single wall smooth fitting body Length of body = A+10 Register sold separately

### Dimensions









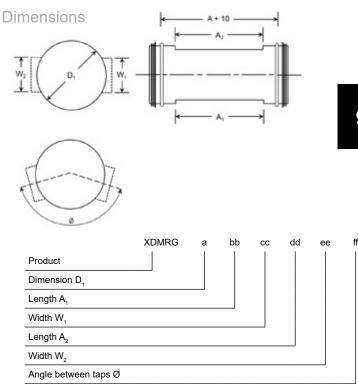

### Description

Double wall smooth fitting body with mounted register (DMR) Length of body = A+10



|                           | TDMRGI | а | bb | сс |
|---------------------------|--------|---|----|----|
| Product                   |        |   |    |    |
| Dimension ØD <sub>1</sub> |        |   |    |    |
| Length A                  |        |   |    |    |
| Width W                   |        |   |    |    |




# Cross fitting bodies

# XDMRG

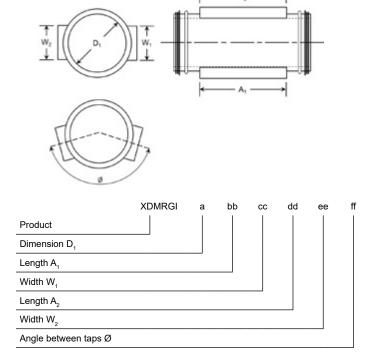


### Description

Single wall smooth fitting body cross Length of body = A+10 Register sold separately



**Dimensions** 




10



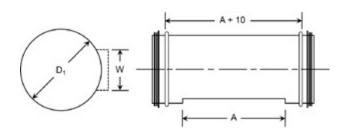
### Description

Double wall smooth fitting body cross with mounted registers (DMR) Length of body = A+10 A= largest  $(A_2 \text{ or } A_1)$ 





# Spiral bodies


# SRTDMRG

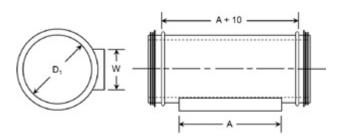


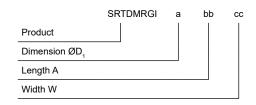
### Description

Single wall spiral fitting body Length of body = A+10 Register sold separately

### Dimensions




|                  | SRTDMRG | а | bb | сс |
|------------------|---------|---|----|----|
| Product          |         |   |    |    |
| Dimension $ØD_1$ |         |   |    |    |
| Length A         |         |   |    |    |
| Width W          |         |   |    |    |


SRTDMRGI



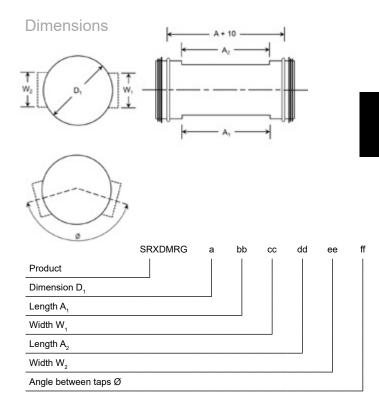
Description

Double wall spiral fitting body with mounted register (DMR) Length of body = A+10







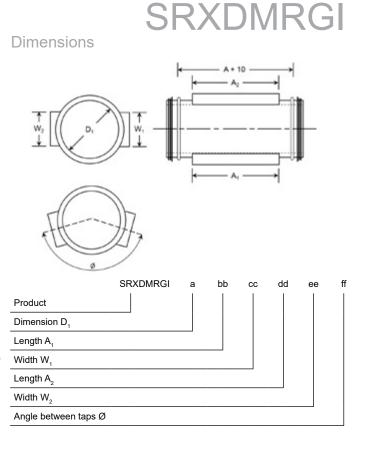

# Cross spiral bodies

# SRXDMRG



### Description

Single wall spiral fitting body cross Length of body = A+10 Register sold separately



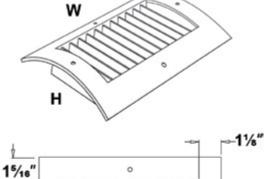

Sł

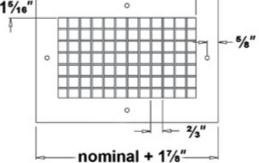


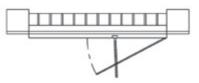
### Description

Double wall spiral fitting body cross with mounted registers (DMR) Length of body = A+10 A= largest  $(A_2 \text{ or } A_1)$ 







We reserve the right to make changes without prior notice. Therefore, all designs, specifications and product features are subject to change without notice. The company and it's products are protected by patents and registered trademarks. Copyright 2016 EHG. All rights reserved.


# Curved register

# CREG





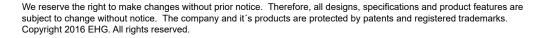




| Register   | Min. duct | Free  | Duct opening | Weight |
|------------|-----------|-------|--------------|--------|
| nom. size  | diameter  | area  |              |        |
| W x H (in) | (in)      | (ft²) | W X H (in)   | (lbs)  |
| 12 × 4     | 8         | 0.231 | 12 x 4       | 1.8    |
| 14 × 4     | 8         | 0.271 | 14 x 4       | 2.1    |
| 12 x 6     | 10        | 0.362 | 12 x 6       | 2.5    |
| 14 x 6     | 10        | 0.425 | 14 x 6       | 2.9    |
| 16 x 6     | 10        | 0.488 | 16 x 6       | 3.3    |

### Description

The CREG is a supply/return register with a contoured face that mounts directly on spiral ductwork. It has adjustable double deflection blades that allow for 4-way airflow and half length screwdriver operated volume adjusting scoop.


Duct diameter must be 4" larger than height (H) of diffuser. Registers are manufactured to fit duct diameters 8" - 48".

### Materials and finish

Galvanized sheet steel (standard). Custom finishes are available. Call for details.

### Order example

|                  | CREG | 12 | 4 | 16 | Galv | None |
|------------------|------|----|---|----|------|------|
| Product          |      |    |   |    |      |      |
| Width (W)        |      |    |   |    |      |      |
| Height (H)       |      |    |   |    |      |      |
| Diameter of Duct |      |    |   |    |      |      |
| Material         |      |    |   |    |      |      |
| Finish           |      |    |   |    |      |      |





# Curved register

| Core velocity (fpm)                     |          |    | 300     | 400     | 500      | 600      | 700      | 800      | 1000     | 1200     |
|-----------------------------------------|----------|----|---------|---------|----------|----------|----------|----------|----------|----------|
| Velocity Pressure                       |          |    | 0.004   | 0.008   | 0.013    | 0.018    | 0.025    | 0.033    | 0.051    | 0.074    |
| Size                                    |          |    |         |         |          |          |          |          |          |          |
| A <sub>c</sub> 0.231 (ft <sup>2</sup> ) | cfm      |    | 69      | 92      | 116      | 139      | 162      | 185      | 231      | 277      |
| 12 x 4                                  | NC       | 0° | < 20    | < 20    | < 20     | 20       | 25       | 30       | 35       | 40       |
|                                         | Throw ft | 0° | 5 6 6.5 | 679     | 8911     | 9 10 14  | 11 12 16 | 12 14 18 | 14 16 24 | 16 18 28 |
| A <sub>c</sub> 0.271 (ft <sup>2</sup> ) | cfm      |    | 81      | 108     | 136      | 163      | 190      | 217      | 271      | 325      |
| 14 x 4                                  | NC       | 0° | < 20    | < 20    | < 20     | 20       | 25       | 30       | 35       | 40       |
|                                         | Throw ft | 0° | 578     | 7810    | 10 11 13 | 11 12 16 | 13 15 20 | 14 16 22 | 16 19 29 | 19 22 34 |
| A <sub>c</sub> 0.362 (ft <sup>2</sup> ) | cfm      |    | 109     | 145     | 181      | 217      | 254      | 290      | 362      | 435      |
| 12 x 6                                  | NC       | 0° | < 20    | < 20    | < 20     | 20       | 25       | 30       | 35       | 40       |
|                                         | Throw ft | 0° | 678     | 8911    | 10 12 14 | 12 13 18 | 14 16 21 | 16 18 24 | 18 21 32 | 22 26 38 |
| A <sub>c</sub> 0.425 (ft <sup>2</sup> ) | cfm      |    | 128     | 170     | 213      | 255      | 298      | 340      | 425      | 510      |
| 14 x 6                                  | NC       | 0° | < 20    | < 20    | < 20     | 20       | 25       | 30       | 35       | 40       |
|                                         | Throw ft | 0° | 689     | 9 10 12 | 11 12 15 | 12 14 19 | 14 16 22 | 17 19 25 | 19 22 33 | 22 26 39 |
| A <sub>c</sub> 0.488 (ft <sup>2</sup> ) | cfm      |    | 146     | 195     | 244      | 293      | 342      | 391      | 488      | 586      |
| 16 x 6                                  | NC       | 0° | < 20    | < 20    | < 20     | 20       | 25       | 30       | 35       | 40       |
|                                         | Throw ft | 0° | 7810    | 9 10 12 | 11 13 16 | 13 15 20 | 15 17 23 | 17 20 26 | 19 22 34 | 23 27 40 |

Performance notes:

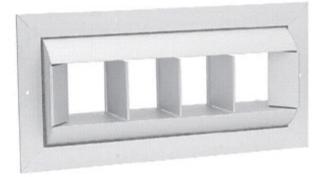
1.) Performance data calculated with blades set at 0°.

2.) Engineering based off nominal face dimension.

3.) Throw values are measured in feet for terminal velocities of 150/100/50 FPM.

4.) Throw data is based on supply air and room air both at isothermal conditions.

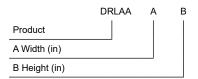
5.) Effective core areas listed in chart are defined as the measurement of space between the blades actually utilized by the air.

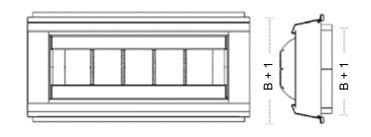

6.) Data obtained from tests conducted in accordance with ANSI/ASHRAE standard 70-2006.

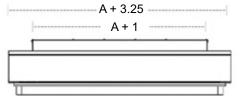
CREG



# **Drum** louvers


# DRLAA





### Description

DRLAA series supply drum grilles and registers are recommended for theaters, arenas, convention halls, factories and shopping centers; anywhere requiring long or short throws. Air flow patterns are adjustable in both the horizontal and vertical planes for maximum versatility. The unique extruded aluminum universal mounting frame results in low installation costs and will adapt to a variety of duct sizes without requiring any expensive duct taps. The extractor-damper that is available will also eliminate the need for secondary extraction devices needing to be mounted remote to the unit. DRLAA grilles and registers efficiently distribute anywhere from 200 through 10,000 CFM and are available in 6x12 through 10x72 sizes.

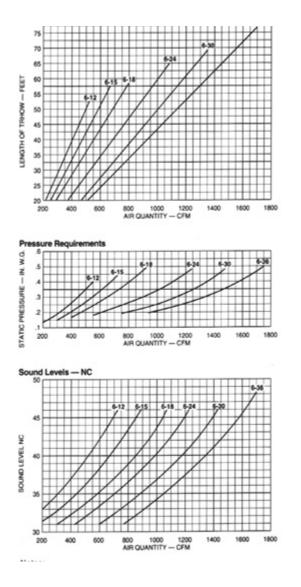
DRLAA drum grilles are built with a single bank of adjustment vanes that also provides control for the direction and length of air streams. DRLAA drum grilles and registers can be installed in either horizontal or vertical orientations to meet architectural and engineering design conditions for reliable performance.







| A Width<br>(in) | B Heig | ght (in) |
|-----------------|--------|----------|
|                 | 6      | 10       |
| 12              | Х      |          |
| 18              | Х      |          |
| 24              | Х      | Х        |
| 30              | Х      | Х        |
| 36              | Х      | Х        |
| 42              |        | Х        |
| 48              | Х      | Х        |
| 54              |        | Х        |
| 60              | Х      | Х        |
| 66              |        | Х        |
| 72              |        | Х        |


| Height                     | 6       | 10      |
|----------------------------|---------|---------|
| Duct Diameter<br>(min/max) | 10 / 65 | 20 / 97 |



# **Drum** louvers

# DRLAA

# **ENGINEERING DATA**



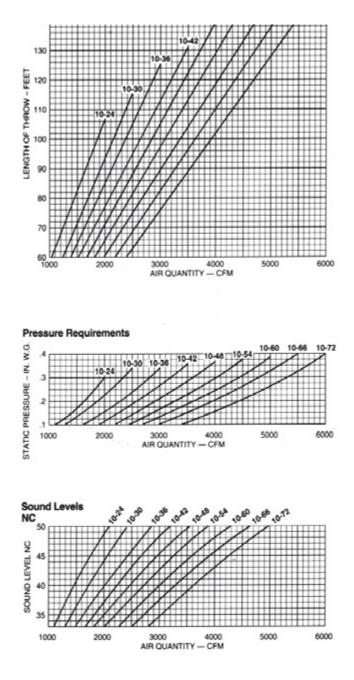
| A <sub>k</sub> Outlet Area | In Square Feet    |
|----------------------------|-------------------|
| <u>Unit Size</u>           | <u>A</u> <u>k</u> |
| 06-12                      | 0.181             |
| 06-15                      | 0.226             |
| 06-18                      | 0.277             |
| 06-24                      | 0.381             |
| 06-30                      | 0.484             |
| 06-36                      | 0.536             |
| 10-24                      | 0.710             |
| 10-30                      | 1.024             |
| 10-36                      | 1.233             |
| 10-42                      | 1.495             |
| 10-48                      | 1.626             |
| 10-54                      | 1.757             |
| 10-60                      | 1.888             |
| 10-66                      | 2.019             |
| 10-72                      | 2.150             |

Products Notes:

1. Throws are based on terminal velocity of 50 fpm. Throws can be reduced up to 35% by adjustable vane settings.

2. Test data based on 70 °F air with rotating barrel and adjustable vanes set parallel to air flow for maximum projection.

3. NC based upon 8dB room absorption.


We reserve the right to make changes without prior notice. Therefore, all designs, specifications and product features are subject to change without notice. The company and it's products are protected by patents and registered trademarks. Copyright 2016 EHG. All rights reserved.



# **Drum** louvers

# DRLAA

# **ENGINEERING DATA**

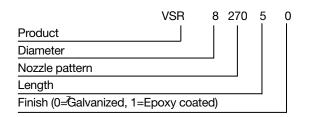


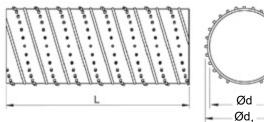
Products Notes:

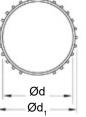
- 1. Throws are based on terminal velocity of 50 fpm. Throws can be reduced up to 35% by adjustable vane settings.
- 2. Test data based on 70 °F air with rotating barrel and adjustable vanes set parallel to air flow for maximum projection.
- 3. NC based upon 8dB room absorption.

We reserve the right to make changes without prior notice. Therefore, all designs, specifications and product features are subject to change without notice. The company and it's products are protected by patents and registered trademarks. Copyright 2016 EHG. All rights reserved.

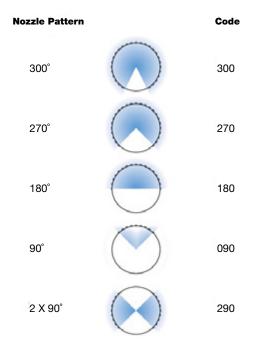






## Description


Ventiduct is an air distribution system consisting of spiral ducts enhanced by a number of small nozzles carefully placed into the duct wall. The system should be primarily used for the supply of cooled air. VSR can be ordered with various nozzle patterns for specific demands.

- •Large cooling effect
- •Large dynamic range
- •Large induction rate
- •Short throw
- •Discrete diffuser design
- •Easy to install
- •Supplied in five sizes ranging from Ø8", 10", 12", 16", 20"
- •Available in lengths between 12" to 60"
- •Standard G90 construction
  - •Optional: epoxy-coated


## Order example







| Ød   | Ød <sub>1</sub> |
|------|-----------------|
| inch | inch            |
| 8    | 8.4             |
| 10   | 10.4            |
| 12   | 12.4            |
| 16   | 16.4            |
| 20   | 20.4            |
|      |                 |



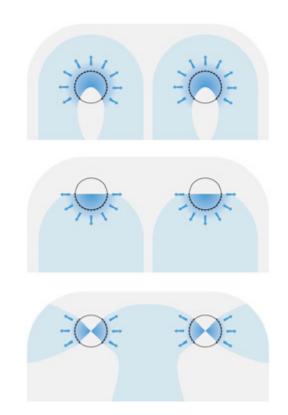


### Dispersal patterns

With Ventiduct nozzle ducts, various flow conditions can be achieved in the room. The downward supply of air always creates the greatest air velocities in the occupied zone and is therefore used mostly in industrial ventilation. The choice between air being supplied horizontally or upwards depends on the required form of flow.

#### Upward supply air

When cooled air is supplied upwards, the cool air mixes with the warmer room air close to the duct nozzles. The supplied air typically covers a vertical area of 78" to 158" below the ducts. At greater distances between the ducts, the supplied air flows behind in a displacement flow further out in the room.


Depending on the required volume flow, a nozzle pattern of between 90° and 300° is used.

#### Downward supply air

When air is supplied downwards, the air velocities in the occupied zone are increased by the thermal forces (by cooling) and by the dynamic forces (Supplied air velocity). This can result in quite high air velocities in the occupied zone, which is not acceptable for traditional comfort ventilation. However, high air velocities can be recommended if a stable downward flow of air is required, and if increased, air velocities in the occupied zone are acceptable. This could, for example, be desirable for industrial applications. A nozzle pattern between 90° and 300° is used, depending on the volume flow required.

#### Horizontal supply air

When air is supplied horizontally, air jets are formed, creating a mixed flow in the room. Depending on the various parameters, maximum air velocities occur in the occupied zone due to the thermal load, air jet velocities or a combination of both. When low supply air velocities are being used (low volume flow or large ducts/nozzle patterns) the form of the flow approximates a form of low impulse supply air, as with upwards supply air. Horizontal supply air can be used in locations where there is a deliberate demand for a flow of air throughout the room in accordance with the mixing principle, and therefore where an upward supply is not being used.



Recommended working areas for Ventiduct The values stated are for guidance only and should be used with care, as incoming volume flow, cooling temperature, duct design and air pattern all have a great deal of influence on the resulting air velocity in the occupied zone.

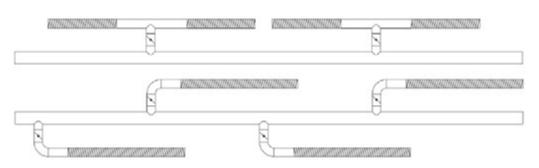
For more detailed calculations, EHG will be happy to carry out a computer calculation.

| Air pattern                        | Up     | Down    | Horizontal |
|------------------------------------|--------|---------|------------|
| Installation height [in] *         | 98-197 | 118-315 | 98-197     |
| Min. distance from ceiling [in] ** | 8      | 4-8     | 4          |
| Δt (t1 - tr) [K]                   | -1–10  | -1–6    | -1–8       |

\* Distance from floor to lower edge of duct

\*\* Distance from upper edge of duct to ceiling must be maintained to avoid dirtying the ceiling




## Technical data

#### Examples of duct design

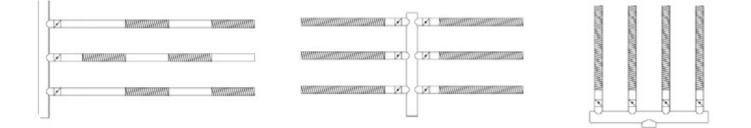
Ventiduct nozzle ducts can be installed in various ways. In high-ceilinged rooms it is generally an advantage to install Ventiduct nozzle ducts as low down as possible (min. height above floor 96"). This provides the greatest efficiency.

#### Cactus model

This solution is used for long, narrow rooms.

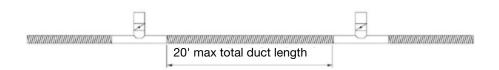


#### Exchange model


An ideal solution for long, narrow rooms. This model provides an even distribution of supplied air.

#### Fishbone model

Ventiduct nozzle ducts stretch out from both sides of the main duct. It is recommended that a volume damper be used for accurate regulation of the air volume.


#### Fork model

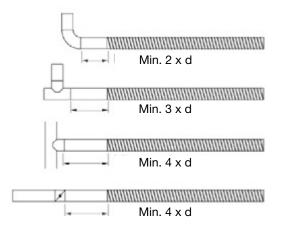
Here the Ventiduct nozzle ducts are positioned on one side of a main or branch duct. It is recommended that a volume damper be installed on the duct joins in order to ensure consistent air distribution in the duct system.



#### Line model

A simple solution that makes duct installation easier and minimizes the number of volume dampers. The distance between the connection ducts is equivalent to twice Ventiduct's maximum length plus the two blind pieces.

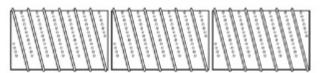


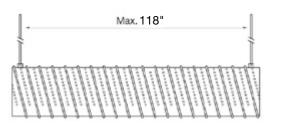



### Technical data

#### Building-in distance

Ventiducts should not be positioned too close to dampers, elbows, tees or other elements that may create turbulence and hence noise.


Straight duct sections should be installed between the Ventiducts and potentially disruptive components, as shown in the illustration below. Suitable duct sections are available.




### Mounting

#### Assembly

The Ventiducts are individually packed in cardboard boxes at the factory, to minimize the risk of transport damage. The packaging is numbered to ensure that the ducts are mounted in the correct order, so that the spiral seam is continuous.





Maximum distance between suspension loops is 118"

### Air velocity in the occupied zone

The air velocity in the occupied zone is a result of air jet velocities and thermal air movements in the room. An exact calculation of the resulting air velocity in the occupied zone can be performed using a computer program. (Contact the EHG sales department for futher information).

For upward supply, the maximum air velocity in the occupied zone are dependent on the temperature difference ti-tr. The best results are achieved by using maximum supply air per duct foot, according to the table on the left.

Depending on the thermal load (W/ft<sup>2</sup>) and the duct length, the maximum air velocity in the occupied zone is indicated as a rough estimate in the diagram below.

Diagram only applies to upward dispersal pattern with maximum volume flow per duct foot: (distance to ceiling >  $4 \times Ø$  d).



Please contact EHG's sales department for further information.



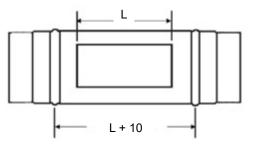
# **Register boxes**

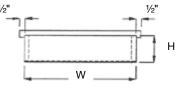
# RDTP

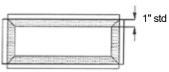


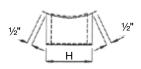
### Description

The RDTP is a heavy duty, high capacity rectangular tap off of round duct. RDTP's are designed specifically for direct mount applications on round duct, to accept mounting of register grilles.


The base of the RDTP is fabricated to the outside radius of the duct on which it is to be mounted. The grille mount side can be ordered with a flanged surface, either turned in or turned out, or a raw end can also be requested.


### Standard Features:


- 1" flange turned in
- H = 6"
- W ≤ outside duct diameter
- Single wall


### **Options:**

- Flange turned out or plain
- Various flange widths
- Various tap heights
- Double wall or lined









### Order example

| Product Code:            | RDTP       | D – L   | - x W –  | H – F |
|--------------------------|------------|---------|----------|-------|
| Type<br>Outside diameter | r of duct  |         |          |       |
| Length of tap            |            |         |          |       |
| Width of tap             |            |         |          |       |
| Height of tap            |            |         |          |       |
| Flange width (tur        | ned in, tu | urned o | out or r | aw)   |



# Rectangular taps

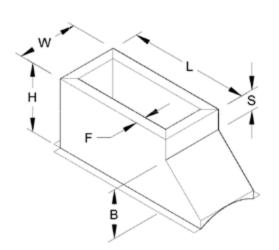
# RDBTP

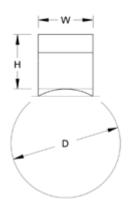




The RDBTP is a heavy duty, high capacity rectangular boot tap off of round duct. RDBTP's are designed specifically for direct mount applications on round duct, to accept mounting of register grilles.

The base of the RDBTP is fabricated to the outside radius of the duct on which it is to be mounted. The grille mount side can be ordered with a flanged surface, either turned in or turned out, or a raw end can also be requested.


### Standard Features:

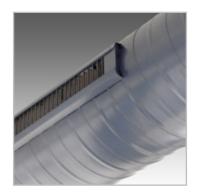

- galvanized sheet steel
- "tack and seal" assembled
- Height is 6", where S = 2" and B = 4"
- Flange width is 1" turned in

NOTE: S = Amount of straight, B = Boot Height S + B = H (Ex. 6 + 3 = 9)

### Options:

- Flange turned out or plain (raw)
- Various flange widths
- · Various tap heights
- Double Wall or lined






### Order example

| Product Code:   | RDBTP     | D – L x ' | W – H – F |
|-----------------|-----------|-----------|-----------|
| Туре            |           |           |           |
| Outside diamete | r of duct |           |           |
| Length of tap   |           |           |           |
| Width of tap    |           |           |           |
| Height of tap   |           |           |           |
| Flange width    |           |           |           |
|                 |           |           |           |



# NOTES





EHG | 2600 Airline Boulevard | Portsmouth, Virginia 23701 | www.ehgduct.com | Phone: 877-482-2344 | Fax: 757.488.4502 |

REV12.2016